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1
MINIMIZING BANDWIDTH TO TRACK
RETURN TARGETS BY AN INSTRUCTION
TRACING SYSTEM

TECHNICAL FIELD

The embodiments of the disclosure relate generally to
processing devices and, more specifically, relate to mini-
mizing bandwidth to track return targets by an instruction
tracing system.

BACKGROUND

An instruction tracing system (ITS) of a processor pro-
vides a debug feature, including a control flow trace that can
log what instructions are being executed by a processor. The
ITS typically produces a sequential log of the instructions
executed by a processor by generating packets specifying
branch resolution information, including target information
of indirect branches. Because return (RET) instructions are
usually the most frequent indirect branches, a sizeable
portion of the trace output and bandwidth of the ITS is
consumed by packets generated by RET instructions. This
bandwidth contributes to computational overhead that does
not directly solve a problem handled by the processor.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be understood more fully from the
detailed description given below and from the accompany-
ing drawings of various embodiments of the disclosure. The
drawings, however, should not be taken to limit the disclo-
sure to the specific embodiments, but are for explanation and
understanding only.

FIG. 1 illustrates an exemplary architecture in accordance
with which embodiments may operate including an instruc-
tion tracing system (ITS) architecture that minimizes band-
width to track return (RET) targets.

FIG. 2 is a flow diagram illustrating a method for mini-
mizing bandwidth to track return targets by an I'TS according
to an embodiment of the disclosure.

FIG. 3 is a flow diagram illustrating another method for
maintaining a CDC for minimizing bandwidth to track
return targets by an ITS according to another embodiment of
the disclosure.

FIG. 4A is a block diagram illustrating a micro-architec-
ture for a processor that implements minimizing bandwidth
to track return targets by an ITS in which one embodiment
of the disclosure may be used.

FIG. 4B is a block diagram illustrating an in-order pipe-
line and a register renaming stage, out-of-order issue/execu-
tion pipeline implemented according to at least one embodi-
ment of the disclosure.

FIG. 5 illustrates a block diagram of the micro-architec-
ture for a processor that includes logic circuits to perform
minimizing bandwidth to track return targets by an ITS in
accordance with one embodiment of the disclosure.

FIG. 6A illustrates an alternative exemplary architecture
in accordance with which embodiments may operate.

FIG. 6B shows a diagrammatic representation of a system
in accordance with which embodiments may operate, be
installed, integrated, or configured.

FIG. 7 is a block diagram illustrating a system in which
an embodiment of the disclosure may be used.

FIG. 8 is a block diagram of a system in which an
embodiment of the disclosure may operate.
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2

FIG. 9 is a block diagram of a system in which an
embodiment of the disclosure may operate.

FIG. 10 illustrates a block diagram of one embodiment of
a computer system.

DETAILED DESCRIPTION

Embodiments of the disclosure implement techniques to
minimize bandwidth to track return targets by an instruction
tracing system (ITS). In particular, improved return (RET)
instruction compression can be provided as a bandwidth-
saving feature of an ITS component of a processor. In
assembly language, a call (CALL) instruction transfers
control to another procedure, and the corresponding RET
instruction of that other procedure returns control to the
instruction following the CALL instruction.

CALLs and RETs can programmatically alter an applica-
tion’s software stack maintained by a processor. That is,
CALLs push the next linear instruction pointer (NLIP) of the
CALL onto the application’s software stack and then branch
to the target instruction pointer of the CALL. RETs pop an
instruction pointer off of the application’s software stack and
then branch to that popped address. The processor may
utilize a return predictor to speculatively begin fetching
instructions from the return target prior to the actual execu-
tion (pop and branch) of the RET instruction. In embodi-
ments of the disclosure, the ITS component leverages such
a return predictor (e.g., return stack buffer (RSB)) of the
processor as an indicator of which RETs are “well-behaved”
and can have their targets compressed, and which are not
“well-behaved” and have their targets listed explicitly in the
ITS trace log (i.e., not compressed). “Well-behaved” RETs
may be RET instructions with targets that match the next
linear instruction pointer (NLIP) of a corresponding CALL
instruction associated with the RET.

The RET compression of embodiments of the disclosure
compresses RETs with targets that can be accurately inferred
by an ITS decoder receiving the ITS packets. Otherwise, the
ITS decoder may make an improper assumption about the
RET target, causing it to lose track of the control flow, and
to waste valuable trace data. More specifically, embodiments
of the disclosure utilize misprediction signals sent through-
out the processor architecture and a call depth counter
(CDC) maintained by the ITS logic to determine when to
compress a RET instruction.

Previously, solutions for RET compression by an ITS
utilized a dedicated ITS return address buffer with very
limited depth and costly comparator logic. Essentially, in the
previous solutions, a dedicated and specialized RSB was
provided to the ITS, where the NLIP of a CALL instruction
was pushed onto the ITS’s RSB stack, and a RET removed
the top NLIP on the ITS’s RSB stack. Previous solutions
then compressed the return target if the removed address and
the actual target address of the RET instruction matched
(where the determination of the match required dedicated
comparator logic in the ITS). Note that the ITS decoder that
processes the ITS packets replicated the ITS’s RSB when
decoding a trace in order to produce the proper target for a
compressed RET.

In comparison, embodiments of the disclosure leverage
existing hardware of the processor (e.g., the RET predictor)
so that RETs that can be predicted correctly by the RET
predictor (RSB) can be compressed, as long as the func-
tionality employed to predict it can be reasonably simulated
by the decoder of the trace (e.g., an I'TS decoder). The use
of comparator logic and target address storage by the ITS is
avoided, thus saving area and power in the processor.
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Furthermore, this makes it far less costly to compress RETs
at greater depths, which further reduces the bandwidth used
by the ITS.

Although the following embodiments may be described
with reference to specific integrated circuits, such as in
computing platforms or microprocessors, other embodi-
ments are applicable to other types of integrated circuits and
logic devices. Similar techniques and teachings of embodi-
ments described herein may be applied to other types of
circuits or semiconductor devices. For example, the dis-
closed embodiments are not limited to desktop computer
systems or Ultrabooks™. And may be also used in other
devices, such as handheld devices, tablets, other thin note-
books, systems on a chip (SOC) devices, and embedded
applications. Some examples of handheld devices include
cellular phones, Internet protocol devices, digital cameras,
personal digital assistants (PDAs), and handheld PCs.
Embedded applications typically include a microcontroller,
a digital signal processor (DSP), a system on a chip, network
computers (NetPC), set-top boxes, network hubs, wide area
network (WAN) switches, or any other system that can
perform the functions and operations taught below.

Although the following embodiments are described with
reference to a processor, other embodiments are applicable
to other types of integrated circuits and logic devices.
Similar techniques and teachings of embodiments of the
disclosure can be applied to other types of circuits or
semiconductor devices that can benefit from higher pipeline
throughput and improved performance. The teachings of
embodiments of the disclosure are applicable to any pro-
cessor or machine that performs data manipulations. How-
ever, the present disclosure is not limited to processors or
machines that perform 512 bit, 256 bit, 128 bit, 64 bit, 32 bit,
or 16 bit data operations and can be applied to any processor
and machine in which manipulation or management of data
is performed. In addition, the following description provides
examples, and the accompanying drawings show various
examples for the purposes of illustration. However, these
examples should not be construed in a limiting sense as they
are merely intended to provide examples of embodiments of
the present disclosure rather than to provide an exhaustive
list of all possible implementations of embodiments of the
present disclosure.

As more computer systems are used in internet, text, and
multimedia applications, additional processor support has
been introduced over time. In one embodiment, an instruc-
tion set may be associated with one or more computer
architectures, including data types, instructions, register
architecture, addressing modes, memory architecture, inter-
rupt and exception handling, and external input and output
J/0).

In one embodiment, the instruction set architecture (ISA)
may be implemented by one or more micro-architectures,
which includes processor logic and circuits used to imple-
ment one or more instruction sets. Accordingly, processors
with different micro-architectures can share at least a portion
of a common instruction set. For example, Intel® Pentium
4 processors, Intel® Core™ processors, and processors from
Advanced Micro Devices, Inc. of Sunnyvale Calif. imple-
ment nearly identical versions of the x86 instruction set
(with some extensions that have been added with newer
versions), but have different internal designs. Similarly,
processors designed by other processor development com-
panies, such as ARM Holdings, [td., MIPS, or their licens-
ees or adopters, may share at least a portion a common
instruction set, but may include different processor designs.
For example, the same register architecture of the ISA may
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be implemented in different ways in different micro-archi-
tectures using new or well-known techniques, including
dedicated physical registers, one or more dynamically allo-
cated physical registers using a register renaming mecha-
nism (e.g., the use of a Register Alias Table (RAT), a
Reorder Buffer (ROB) and a retirement register file. In one
embodiment, registers may include one or more registers,
register architectures, register files, or other register sets that
may or may not be addressable by a software programmer.

In one embodiment, an instruction may include one or
more instruction formats. In one embodiment, an instruction
format may indicate various fields (number of bits, location
of bits, etc.) to specify, among other things, the operation to
be performed and the operand(s) on which that operation is
to be performed. Some instruction formats may be further
broken defined by instruction templates (or sub formats).
For example, the instruction templates of a given instruction
format may be defined to have different subsets of the
instruction format’s fields and/or defined to have a given
field interpreted differently. In one embodiment, an instruc-
tion is expressed using an instruction format (and, if defined,
in a given one of the instruction templates of that instruction
format) and specifies or indicates the operation and the
operands upon which the operation will operate.

FIG. 1 illustrates an exemplary architecture 100 in accor-
dance with which embodiments may operate, where the
architecture 100 is an ITS architecture that minimizes band-
width to track return (RET) targets. Architecture 100 may
include processor components such as, but not limited to,
instruction fetch unit 110, instruction decode unit 120,
resource allocator and register renaming unit 130, scheduler
and execution units 140, and retirement unit 150.

Instruction fetch unit 110 may fetch instructions from
memory and feed them to instruction decode unit 120,
which, in turn, decodes or interprets them. For example, in
one embodiment, the instruction decode unit 120 decodes a
received instruction into one or more operations called
“micro-instructions” or “micro-operations” (also called
micro op or uops) that the processor can execute. In other
embodiments, the instruction decode unit 120 parses the
instruction into an opcode and corresponding data and
control fields that are used by the architecture 100 to perform
operations in accordance with one embodiment.

In one embodiment, the resource allocator and register
renaming unit 130 is where the uops from instruction decode
unit 120 are prepared for execution. Resource allocator logic
ofunit 130 allocates machine buffers and resources that each
uop uses to execute. Register renaming logic of unit 130
renames logic registers onto entries in a register file. The
resource allocator may also allocate an entry for each uop in
one of two uop queues, one for memory operations and one
for non-memory operations

The scheduler and execution unit 140 includes logic to
schedule and execute renamed uops. For instance, uop
schedulers may determine when a uop is ready to execute
based on the readiness of their dependent input register
operand sources and the availability of the execution
resources the uops need to complete their operation. The
schedulers arbitrate for the dispatch ports to schedule uops
for execution. Furthermore, execution cluster(s) may
include a set of one or more execution units 144 and a set of
one or more memory access units 142. The execution units
144 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and operate on various types of
data (e.g., scalar floating point, packed integer, packed
floating point, vector integer, vector floating point).
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The retirement unit 150 can receive completed uops from
the scheduler and execution unit 140 for retirement. In one
embodiment, the retirement unit 150 includes a real time
instruction trace unit (ITS) 155 to minimize bandwidth to
track RET targets. ITS 155 outputs a trace stream that details
what instructions were executed by the scheduler and execu-
tion unit 140 by generating packets with branch resolution
information, including target information of indirect
branches. In embodiments of the disclosure, ITS 155
includes RET compression module 152 to compress select
RET instructions. This figure does not illustrate ITS soft-
ware (e.g., ITS decoder) that is used to interpret the packets
sent from ITS 155.

In some embodiments, a retirement buffer (not shown) of
the retirement unit 150 may temporarily store retired instruc-
tions. This buffer may be communicably interfaced to ITS
155, which itself includes several components whose func-
tions are discussed below. In one embodiment, the ITS RET
compression relies on an understanding of the workings of
a Return Stack Buffer (RSB) 114 of a branch predictor 112
of the instruction fetch unit 110. The RSB 114 is a special,
dedicated predictor mechanism of the branch predictor 112
used for predicting targets of RET instructions. In some
embodiments, the RSB 114 is also known as a RET predic-
tor.

In one embodiment, each time a CALL instruction is seen
at the instruction fetch unit 110, the RSB 114 pushes the
CALL’s next linear instruction pointer (NLIP) onto a stack
of'the RSB 114, and adjusts a top-of-stack (TOS) of the RSB
114 to point to this entry. When a RET is predicted, the target
pointed to by the TOS entry is popped off of the stack and
used as the predicted target, and the TOS pointer is moved
to the prior CALL’s NLIP entry in the RSB 114. Implemen-
tations of the RSB 114 may vary depending upon the
particular architecture on which it operates. For example, the
location of the RSB 114 in the pipeline, supported CALL
depth, and specific behavior may vary from one implemen-
tation to the next.

Embodiments of the disclosure utilize the stack-based
nature of the RSB 114 as an indicator of which RETs are
“well-behaved” and can have their targets compressed, and
which are not “well-behaved” and should have the entire
address of their targets listed explicitly in the I'TS 155 trace
log (i.e., not compressed). In one embodiment, “well-be-
haved” refers to RET instructions with targets that match the
NLIP of the corresponding CALL instruction.

Embodiments of the disclosure provide improved RET
compression as a bandwidth-saving feature of the ITS 155.
The RET compression can be implemented to compress
RETs with targets that can be accurately inferred by an ITS
decoder (not shown) that receives the ITS 155 packets.
Otherwise, the ITS decoder may make an improper assump-
tion about the RET target, causing it to lose track of the
control flow, and to waste valuable trace data.

In one embodiment, ITS 155 compresses a RET by
inserting a flag (e.g., a bit) into the ITS trace log, indicating
that the RET instruction is correctly predicted from the RSB
114. The ITS decoder that is used to interpret the packets
sent from I'TS 155 then is aware that it can interpret the RET
target from the corresponding CALL of the trace log. If the
RET is not to be compressed, then the ITS 155 may send a
full (e.g., 48-bit) target address for the RET as part of the
trace log.

In one embodiment, each conditional branch outcome is
recorded into a packet as a flag (e.g. a bit) into the trace log.
To increase efficiency, sequentially executed conditional
branch outcomes can be compressed into a single packet,
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where a sequence of flag bits are stored corresponding to the
outcomes of those conditional branches. As the ITS decoder
walks through the binary code and encounters a conditional
branch, the ITS decoder consumes one bit from the sequence
of bits stored in the conditional branch output packet, and
follows the control flow path (taken or not taken) indicated
by that bit. In one embodiment, an inserted flag bit repre-
senting a compressed return may be intermixed into the
sequence of bits inside an ITS packet representing the
taken/not-taken outcomes of conditional branches. As the
ITS decoder walks the binary code consuming bits in the
sequence stored in the packet, and it may encounter a RET
instruction. If there is a flag bit set to true in the sequence,
then the ITS decoder can consume the bit and understand
that the RET instruction has a compressed address.

If, when the ITS decoder walks to a RET instruction, and
the conditional branch outcome packet has terminated and a
new conditional branch packet is encountered with the first
flag bit set to true, then the decoder can consume the bit and
understand that the RET instruction has a compressed
address. If, when the decoder walks to a RET instruction,
and the conditional branch outcome packet has terminated
and a taken target packet is encountered, the ITS decoder can
assume an uncompressed RET, consume the packet, and
proceed to the instruction pointer address stored in the said
taken target packet.

Accordingly, in embodiments of the disclosure, ITS 155
implements two conditions by which the RET compression
algorithm abides. First, all RETs with targets that do not
match the NLIP of the corresponding CALL (i.e., not
“well-behaved”) should not be compressed. Second, RETs
with corresponding CALLs that have not been seen by the
ITS decoder should not be compressed, even if they are
“well-behaved.” With respect to the second condition, the
RET compression algorithm of ITS 155 relies on the ITS
decoder to store CALL NLIPs as part of the trace log, so that
they can be used when RETs are compressed and no target
is provided in the trace log. As such, if the CALL was not
part of the trace log, the ITS decoder is not able to apply the
proper target if the matching RET is compressed. Further-
more, in one embodiment, the trace log is divided up into
smaller sections separated by one or more boundary packets
(BPs), which provide the ITS decoder with relevant state
information such that the ITS decoder can start decoding at
those boundary points without starting from the very begin-
ning of the trace log. Thus, if the CALL was not part of the
trace log section in which a RET was seen, the full target is
inserted into the trace log.

In one embodiment, well-behaved RETs may be correctly
predicted (up to a depth of ‘N’ of the RSB 114), while
non-well-behaved RETs and RETs beyond depth N are
assumed to mispredict (even if that is not the case in the
execution flow). Thus, the RET compression module 152
may be able to compress all RETs that are correctly pre-
dicted and within the depth of the RSB 114. One example
RSB 114 may maintain an N-deep CALL stack, and a TOS
pointer to indicate the RSB entry from which the next RETs
predicted target will be taken. As such, this example RSB
can accurately predict the target for RETs up to a depth of
N. At any greater depth, the RSB underflows, wrapping
around the RSB stack, and no longer has accurate NLIP
information for the next shallower RET. Thus, mispredic-
tions may likely ensue for any subsequent RETs that execute
after the last N deep RETs.

As the ITS 155 is part of the retirement unit 150 and the
overall processor pipeline, it receives signals from the
execution unit 140 indicating any RET mispredictions. The
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execution unit determines if there was a misprediction by
comparing the instruction pointer popped from the applica-
tion’s software stack with the target predicted by the RSB.
When these RET mispredict signals are received, the RET
compression module 152 does not compress the correspond-
ing RET at the ITS 155, since these RETs may be not
“well-behaved”.

Unfortunately, there are also scenarios where the RSB 114
could correctly predict a non-well-behaved RET, and any
such scenario risks ITS decoder confusion if the RET is
compressed. For example, depending on the sophistication
of'the RSB 114, there can be many scenarios where the RSB
could predict a target that is inconsistent with the CALL
stack and, at the same time, could happen to be the correct
prediction. If this happens, the RET is implicitly a non-well-
behaved RET since the RET target is not consistent with the
CALL stack. As such, the RET compression module 152
should avoid compressing this RET.

Two scenarios where the RSB 114 may predict a target
that is inconsistent with the CALL stack in various scenarios
include an RSB 114 underflow, and speculative/bogus
instructions that update the RSB 114.

First, an RSB 114 underflow may occur if more RETs than
CALLs are seen by the RSB 114, or if the CALL stack depth
exceeds the depth of the RSB (and wraps around to the
bottom of the RSB). In either case, the RSB 114 holds the
last N deep targets seen, and hence can accurately predict the
“lowest” (e.g., most recent) N RETs. For the remaining
underflowed RETs, the RSB 114 provides a default predic-
tion. For example, this default prediction could be static (i.e.,
the RET NLIP, or the same target as the last RET), or
dynamic (i.e., prediction from another predictor). But in any
case, there is a risk that the target could be inconsistent with
the CALL stack.

Second, speculative and/or bogus CALL and/or RET
instructions are instructions that will not be committed (i.e.,
in the speculative path of a mispredicted branch or other
pipeline flush). If such instructions update the RSB 114,
those entries should be invalidated or repaired. Any use of
these bogus entries to predict non-bogus RETs is likely to
produce predictions inconsistent with the CALL stack. It is
the handling of these types of pipeline flushes that separates
simple RSBs from the state-of-the-art. A sophisticated RSB
can restore the TOS to the pre-flush location, and can restore
any modified entries. A simple RSB may do nothing, allow-
ing RETs to predict from bogus entries (most likely incor-
rectly).

To account for the above-described “lucky guess™ sce-
narios, embodiments of the disclosure implement protec-
tions to prevent such correctly-predicted RETs from com-
pressing. The ITS 155 may maintain a CALL depth counter
(CDC) 154 to provide this protection. The size of the CDC
154 depends on the depth of the RSB 114, such that the CDC
154 should saturate when/before the RSB 114 depth (N) is
reached. For example, the CDC 154 may be 5 bits wide,
covering an ‘N’ of 32. When the CDC reaches the max depth
of N, it no longer increments beyond N (i.e., it saturates).
This supports compressing RET targets for return predic-
tions that come from valid RSB entries and not from
wrap-around entries.

In embodiments of the disclosure, the CDC 154 incre-
ments on retirement of any CALL that updates the RSB 114,
decrements on retirement of any RET that predicts from the
RSB 114, and resets for any scenario that could cause the
RSB to predict a target that is not consistent with the CALL
stack, as described above. As a result, in embodiments of the
disclosure, the RET compression module 152 compresses a
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RET if it is (1) predicted correctly (e.g., no misprediction
signals received) and (2) if CDC 154 is greater than 0. By
establishing a condition of the CDC 154 being greater than
0, compression of any underflowed RETs is avoided, (due to
the counter saturating, or ceasing to decrement, at 0). This
addresses the first RSB 114 “lucky guess” scenario dis-
cussed above. The other (second) RSB 114 “lucky guess”
scenario discussed above of speculative/bogus instructions
updating the RSB 114 is handled by configuring reset
conditions of the CDC 154, as discussed further below.

In embodiments of the disclosure, reset conditions of the
CDC 154 should be tailored to the RSB 114 behavior. The
following are example scenarios that may cause the CDC
154 to be reset:

(1) RET Mispredict

In one embodiment, any time a RET is mispredicted, it is
assumed that the RSB’s 114 CALL stack has become
out-of-sync with a software CALL stack of the processor,
and hence predictions from the existing entries may not be
consistent with the software CALL stack. For example, this
behavior is likely if software manipulates the CALL stack,
by pushing a RET target onto the stack by means other than
a CALL. By resetting the CDC 154 when a RET mispre-
dicts, the ITS 155 can ensure that only RETs that correspond
to future/younger CALLs can be compressed, and hence
RET predicted from the older, out-of-sync entries will not
compress.

(2) All Mispredicts, or Other Pipeline Flush

Depending on the recovery capabilities of the RSB 114,
the CDC 154 may be reset on any pipeline flush. In some
embodiments, an advanced RSB 114 may be able to recover
precisely, in which case no reset is performed. But in any
scenario where an entry updated by a bogus/speculative
CALL could be used to predict a future RET, the CDC 154
should be reset. This ensures that RETs predicted by existing
(possibly bogus) entries are not compressed.

(3) Disable of ITS Tracing

In one embodiment, a CALL that executes while ITS 155
tracing is disabled does not increment the CDC 154, and
hence the corresponding RET is not compressed (even if
tracing is enabled when it executes). ITS tracing could be
disabled by clearing of the enable bit, buffer overtlow,
software leaving the tracing context or IP range, etc. In any
of these cases the CDC 154 is reset, and remains reset until
tracing resumes. This is because the ITS decoder does not
see the CALL to insert into a call stack tracker that is
maintained by the ITS decoder.

(4) ITS Sync Point

ITS 155 includes a periodic synchronization (sync) point
module 156 that issues a periodic sync packet, called a
boundary packet (BP). This BP packet serves as a starting
point for the ITS decoder, allowing it align on packet
boundaries when either beginning to decode, skipping to a
new section of the trace log, or recovering from a decode
error. Along with the cases above, this ITS sync point reset
condition serves to assure that RETs with corresponding
CALLs that have been seen by the ITS decoder are com-
pressed. Because any BP could be an ITS decoder starting
point, no RET with a corresponding CALL preceding the
prior BP should be compressed.

FIG. 2 is a flow diagram illustrating a method 200 for
minimizing bandwidth to track return targets by an ITS
according to an embodiment of the disclosure. Method 200
may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (such as instructions run on
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a processing device), firmware, or a combination thereof. In
one embodiment, method 200 is performed by ITS 155 of
FIG. 1.

Method 200 begins at block 210 where a RET instruction
is executed and retired. Then, at decision block 220, the ITS
determines whether a mispredict signal has been received
corresponding to the RET instruction. If so, then method 200
proceeds to block 250 where the RET instruction is not
compressed for purposes of generating packets for the
instruction trace log of the ITS. If there is no misprediction
signal corresponding to the RET instruction, then method
200 proceeds to decision block 230.

At decision block 230, the ITS determines whether a CDC
maintained by the ITS is greater than 0. If not, then method
200 proceeds to block 250, where the RET is not com-
pressed. On the other hand, if the CDC is greater than 0 at
decision block 230, then method 200 proceeds to block 240,
where the RET instruction is compressed by the ITS for the
instruction trace log. In one embodiment, the RET compres-
sion includes inserting a 1-bit indication (e.g., flag) into the
trace log to indicate that the RET instruction is correctly
predicted from the corresponding CALL.

FIG. 3 is a flow diagram illustrating another method 300
for maintaining a CDC for minimizing bandwidth to track
return targets by an ITS according to another embodiment of
the disclosure. Method 300 may be performed by processing
logic that may comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (such
as instructions run on a processing device), firmware, or a
combination thereof. In one embodiment, method 300 is
performed by ITS 155 of FIG. 1.

Method 300 begins at block 305 where an input signal is
received by the ITS. A variety of input signals may be
received by the ITS, as depicted by arrows 310-335. At
arrow 310, an indication of a CALL that updates the RSB is
received. In this case, method 300 proceeds to decision
block 340 where it is determined whether the CDC is equal
to a maximum value of the CDC. In one embodiment, the
maximum value is configured to be equal to the depth of the
RSB of the processor. If the current CDC value is equal to
the max value, then method 300 proceeds to block 365
where no action is taken with respect to the CDC. If the CDC
is not equal to its maximum value at decision block 340, then
method 300 proceeds to block 345 where the CDC is
incremented. In one embodiment, the CDC is incremented
by 1.

At arrow 315, an indication of a RET that predicts from
the RSB is received. In this case, method 300 proceeds to
decision block 350, where it is determined whether the
current CDC value is equal to 0. If so, then method 300
proceeds to block 365 where no action is taken with respect
to the CDC. On the other hand, if the CDC is not equal to
0, then method 300 proceeds to block 355 where the CDC
is decremented. In one embodiment, the CDC is decre-
mented by 1.

Arrows 320-335 are all signals that cause a reset condition
for the CDC. Arrow 320 is a RET mispredict signal. Arrow
325 is a mispredict signal of any type (RET mispredict as
well as all other mispredicts). In some embodiments, when
an advanced RSB is implemented that can recover from
non-RET mispredicts, this signal may be an optional reset
condition for the CDC, as indicated by the dashed line in the
figure. Arrow 330 is a signal that indicates when the ITS
trace function is disabled. Arrow 335 is an indication of an
ITS sync point (e.g., a BP packet). When any of these signals
320-335 are received, method 300 to proceeds to block 360,
where the CDC is reset to 0.
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FIG. 4A is a block diagram illustrating a micro-architec-
ture for a processor 400 that implements minimizing band-
width to track return targets by an ITS in accordance with
one embodiment of the disclosure. Specifically, processor
400 depicts an in-order architecture core and a register
renaming logic, out-of-order issue/execution logic to be
included in a processor according to at least one embodi-
ment of the disclosure.

Processor 400 includes a front end unit 430 coupled to an
execution engine unit 450, and both are coupled to a
memory unit 470. The processor 400 may include a reduced
instruction set computing (RISC) core, a complex instruc-
tion set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, processor 400 may include a special-purpose
core, such as, for example, a network or communication
core, compression engine, graphics core, or the like. In one
embodiment, processor 400 may be a multi-core processor
or may part of a multi-processor system.

The front end unit 430 includes a branch prediction unit
432 coupled to an instruction cache unit 434, which is
coupled to an instruction translation lookaside buffer (TLB)
436, which is coupled to an instruction fetch unit 438, which
is coupled to a decode unit 440. The decode unit 440 (also
known as a decoder) may decode instructions, and generate
as an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decoder
440 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only
memories (ROMs), etc. The instruction cache unit 434 is
further coupled to the memory unit 470. The decode unit 440
is coupled to a rename/allocator unit 452 in the execution
engine unit 450.

The execution engine unit 450 includes the rename/
allocator unit 452 coupled to a retirement unit 454 and a set
of one or more scheduler unit(s) 456. The scheduler unit(s)
456 represents any number of different schedulers, including
reservations stations (RS), central instruction window, etc.
The scheduler unit(s) 456 is coupled to the physical register
file(s) unit(s) 458. Each of the physical register file(s) units
458 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, etc.,
status (e.g., an instruction pointer that is the address of the
next instruction to be executed), etc. The physical register
file(s) unit(s) 458 is overlapped by the retirement unit 454 to
illustrate various ways in which register renaming and
out-of-order execution may be implemented (e.g., using a
reorder buffer(s) and a retirement register file(s), using a
future file(s), a history buffer(s), and a retirement register
file(s); using a register maps and a pool of registers; etc.).

In one embodiment, the retirement unit 454 includes an
ITS 459 component to minimize bandwidth to track return
targets. ITS 459 may be the same as I'TS 155 described with
respect to FIG. 1.

Generally, the architectural registers are visible from the
outside of the processor or from a programmer’s perspec-
tive. The registers are not limited to any known particular
type of circuit. Various different types of registers are
suitable as long as they are capable of storing and providing
data as described herein. Examples of suitable registers
include, but are not limited to, dedicated physical registers,
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dynamically allocated physical registers using register
renaming, combinations of dedicated and dynamically allo-
cated physical registers, etc. The retirement unit 454 and the
physical register file(s) unit(s) 458 are coupled to the execu-
tion cluster(s) 460. The execution cluster(s) 460 includes a
set of one or more execution units 462 and a set of one or
more memory access units 464. The execution units 462
may perform various operations (e.g., shifts, addition, sub-
traction, multiplication) and operate on various types of data
(e.g., scalar floating point, packed integer, packed floating
point, vector integer, vector floating point).

While some embodiments may include a number of
execution units dedicated to specific functions or sets of
functions, other embodiments may include only one execu-
tion unit or multiple execution units that all perform all
functions. The scheduler unit(s) 456, physical register file(s)
unit(s) 458, and execution cluster(s) 460 are shown as being
possibly plural because certain embodiments create separate
pipelines for certain types of data/operations (e.g., a scalar
integer pipeline, a scalar floating point/packed integer/
packed floating point/vector integer/vector floating point
pipeline, and/or a memory access pipeline that each have
their own scheduler unit, physical register file(s) unit, and/or
execution cluster—and in the case of a separate memory
access pipeline, certain embodiments are implemented in
which only the execution cluster of this pipeline has the
memory access unit(s) 464). It should also be understood
that where separate pipelines are used, one or more of these
pipelines may be out-of-order issue/execution and the rest
in-order.

The set of memory access units 464 is coupled to the
memory unit 470, which may include a data prefetcher 480,
a data TLB unit 472, a data cache unit (DCU) 474, and a
level 2 (I.2) cache unit 476, to name a few examples. In
some embodiments DCU 474 is also known as a first level
data cache (L1 cache). The DCU 474 may handle multiple
outstanding cache misses and continue to service incoming
stores and loads. It also supports maintaining cache coher-
ency. The data TLLB unit 472 is a cache used to improve
virtual address translation speed by mapping virtual and
physical address spaces. In one exemplary embodiment, the
memory access units 464 may include a load unit, a store
address unit, and a store data unit, each of which is coupled
to the data TLB unit 472 in the memory unit 470. The 1.2
cache unit 476 may be coupled to one or more other levels
of cache and eventually to a main memory.

In one embodiment, the data prefetcher 480 speculatively
loads/prefetches data to the DCU 474 by automatically
predicting which data a program is about to consume.
Prefeteching may refer to transferring data stored in one
memory location of a memory hierarchy (e.g., lower level
caches or memory) to a higher-level memory location that is
closer (e.g., yields lower access latency) to the processor
before the data is actually demanded by the processor. More
specifically, prefetching may refer to the early retrieval of
data from one of the lower level caches/memory to a data
cache and/or prefetch buffer before the processor issues a
demand for the specific data being returned.

The processor 400 may support one or more instructions
sets (e.g., the x86 instruction set (with some extensions that
have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.).

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so in a variety of ways including
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time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes a
separate instruction and data cache units and a shared 1.2
cache unit, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.

FIG. 4B is a block diagram illustrating an in-order pipe-
line and a register renaming stage, out-of-order issue/execu-
tion pipeline implemented by processing device 400 of FIG.
4A according to some embodiments of the disclosure. The
solid lined boxes in FIG. 4B illustrate an in-order pipeline,
while the dashed lined boxes illustrates a register renaming,
out-of-order issue/execution pipeline. In FIG. 4B, a proces-
sor pipeline 400 includes a fetch stage 402, a length decode
stage 404, a decode stage 406, an allocation stage 408, a
renaming stage 410, a scheduling (also known as a dispatch
or issue) stage 412, a register read/memory read stage 414,
an execute stage 416, a write back/memory write stage 418,
an exception handling stage 422, and a commit stage 424. In
some embodiments, the ordering of stages 402-424 may be
different than illustrated and are not limited to the specific
ordering shown in FIG. 4B.

FIG. 5 illustrates a block diagram of the micro-architec-
ture for a processor 500 that includes logic circuits to
perform minimizing bandwidth to track return targets by an
ITS in accordance with one embodiment of the disclosure.
In some embodiments, an instruction in accordance with one
embodiment can be implemented to operate on data ele-
ments having sizes of byte, word, doubleword, quadword,
etc., as well as datatypes, such as single and double precision
integer and floating point datatypes. In one embodiment the
in-order front end 501 is the part of the processor 500 that
fetches instructions to be executed and prepares them to be
used later in the processor pipeline.

The front end 501 may include several units. In one
embodiment, the instruction prefetcher 526 fetches instruc-
tions from memory and feeds them to an instruction decoder
528 which in turn decodes or interprets them. For example,
in one embodiment, the decoder decodes a received instruc-
tion into one or more operations called “micro-instructions”
or “micro-operations” (also called micro op or uops) that the
machine can execute. In other embodiments, the decoder
parses the instruction into an opcode and corresponding data
and control fields that are used by the micro-architecture to
perform operations in accordance with one embodiment. In
one embodiment, the trace cache 530 takes decoded uops
and assembles them into program ordered sequences or
traces in the vop queue 534 for execution. When the trace
cache 530 encounters a complex instruction, the microcode
ROM 532 provides the uops needed to complete the opera-
tion.

Some instructions are converted into a single micro-op,
whereas others need several micro-ops to complete the full
operation. In one embodiment, if more than four micro-ops
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are needed to complete an instruction, the decoder 528
accesses the microcode ROM 532 to do the instruction. For
one embodiment, an instruction can be decoded into a small
number of micro ops for processing at the instruction
decoder 528. In another embodiment, an instruction can be
stored within the microcode ROM 532 should a number of
micro-ops be needed to accomplish the operation. The trace
cache 530 refers to a entry point programmable logic array
(PLA) to determine a correct micro-instruction pointer for
reading the micro-code sequences to complete one or more
instructions in accordance with one embodiment from the
micro-code ROM 532. After the microcode ROM 532
finishes sequencing micro-ops for an instruction, the front
end 501 of the machine resumes fetching micro-ops from the
trace cache 530.

The out-of-order execution engine 503 is where the
instructions are prepared for execution. The out-of-order
execution logic has a number of buffers to smooth out and
re-order the flow of instructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buffers and
resources that each uop needs in order to execute. The
register renaming logic renames logic registers onto entries
in a register file. The allocator also allocates an entry for
each vop in one of the two uop queues, one for memory
operations and one for non-memory operations, in front of
the instruction schedulers: memory scheduler, fast scheduler
502, slow/general floating point scheduler 504, and simple
floating point scheduler 506. The uop schedulers 502, 504,
506, determine when a uop is ready to execute based on the
readiness of their dependent input register operand sources
and the availability of the execution resources the uops need
to complete their operation. The fast scheduler 502 of one
embodiment can schedule on each half of the main clock
cycle while the other schedulers can only schedule once per
main processor clock cycle. The schedulers arbitrate for the
dispatch ports to schedule vops for execution.

Register files 508, 510, sit between the schedulers 502,
504, 506, and the execution units 512, 514, 516, 518, 520,
522, 524 in the execution block 511. There is a separate
register file 508, 510, for integer and floating point opera-
tions, respectively. Each register file 508, 510, of one
embodiment also includes a bypass network that can bypass
or forward just completed results that have not yet been
written into the register file to new dependent uops. The
integer register file 508 and the floating point register file
510 are also capable of communicating data with the other.
For one embodiment, the integer register file 508 is split into
two separate register files, one register file for the low order
32 bits of data and a second register file for the high order
32 bits of data. The floating point register file 510 of one
embodiment has 128 bit wide entries because floating point
instructions typically have operands from 64 to 128 bits in
width.

The execution block 511 contains the execution units 512,
514, 516, 518, 520, 522, 524, where the instructions are
actually executed. This section includes the register files
508, 510, that store the integer and floating point data
operand values that the micro-instructions need to execute.
The processor 500 of one embodiment is comprised of a
number of execution units: address generation unit (AGU)
512, AGU 514, fast ALU 516, fast ALU 518, slow ALU 520,
floating point ALU 522, floating point move unit 524. For
one embodiment, the floating point execution blocks 522,
524, execute floating point, MMX, SIMD, and SSE, or other
operations. The floating point ALU 522 of one embodiment
includes a 64 bit by 64 bit floating point divider to execute
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divide, square root, and remainder micro-ops. For embodi-
ments of the present disclosure, instructions involving a
floating point value may be handled with the floating point
hardware.

In one embodiment, the ALU operations go to the high-
speed ALU execution units 516, 518. The fast ALUs 516,
518, of one embodiment can execute fast operations with an
effective latency of half a clock cycle. For one embodiment,
most complex integer operations go to the slow ALU 520 as
the slow ALU 520 includes integer execution hardware for
long latency type of operations, such as a multiplier, shifts,
flag logic, and branch processing. Memory load/store opera-
tions are executed by the AGUs 512, 514. For one embodi-
ment, the integer ALLUs 516, 518, 520, are described in the
context of performing integer operations on 64 bit data
operands. In alternative embodiments, the ALUs 516, 518,
520, can be implemented to support a variety of data bits
including 16, 32, 128, 256, etc. Similarly, the floating point
units 522, 524, can be implemented to support a range of
operands having bits of various widths. For one embodi-
ment, the floating point units 522, 524, can operate on 128
bits wide packed data operands in conjunction with SIMD
and multimedia instructions.

In one embodiment, the uops schedulers 502, 504, 506,
dispatch dependent operations before the parent load has
finished executing. As uops are speculatively scheduled and
executed in processor 500, the processor 500 also includes
logic to handle memory misses. If a data load misses in the
data cache, there can be dependent operations in flight in the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes
instructions that use incorrect data. Only the dependent
operations need to be replayed and the independent ones are
allowed to complete. The schedulers and replay mechanism
of one embodiment of a processor are also designed to catch
instruction sequences for text string comparison operations.

The processor 500 also includes logic to implement
minimizing bandwidth to track return targets by an ITS
according to embodiments of the disclosure. In one embodi-
ment, the execution block 511 of processor 500 may include
instruction tracing module, such as an ITS, to perform RET
compression to minimize bandwidth to track RET targets
according to the description herein.

The term “registers” may refer to the on-board processor
storage locations that are used as part of instructions to
identify operands. In other words, registers may be those
that are usable from the outside of the processor (from a
programmer’s perspective). However, the registers of an
embodiment should not be limited in meaning to a particular
type of circuit. Rather, a register of an embodiment is
capable of storing and providing data, and performing the
functions described herein. The registers described herein
can be implemented by circuitry within a processor using
any number of different techniques, such as dedicated physi-
cal registers, dynamically allocated physical registers using
register renaming, combinations of dedicated and dynami-
cally allocated physical registers, etc. In one embodiment,
integer registers store thirty-two bit integer data. A register
file of one embodiment also contains eight multimedia
SIMD registers for packed data.

For the discussions below, the registers are understood to
be data registers designed to hold packed data, such as 64
bits wide MMXTM registers (also referred to as ‘mm’
registers in some instances) in microprocessors enabled with
MMX technology from Intel Corporation of Santa Clara,
Calif. These MMX registers, available in both integer and
floating point forms, can operate with packed data elements
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that accompany SIMD and SSE instructions. Similarly, 128
bits wide XMM registers relating to SSE2, SSE3, SSE4, or
beyond (referred to generically as “SSEx”) technology can
also be used to hold such packed data operands. In one
embodiment, in storing packed data and integer data, the
registers do not need to differentiate between the two data
types. In one embodiment, integer and floating point are
either contained in the same register file or different register
files. Furthermore, in one embodiment, floating point and
integer data may be stored in different registers or the same
registers.

FIG. 6A illustrates an alternative exemplary architecture
in accordance with which embodiments may operate. In one
embodiment, the integrated circuit 601 includes instruction
tracing system (ITS) 607 to trace instructions of a traced
application, mode, or code region, as the instructions are
executed by the integrated circuit 601; packet generation
logic 603 to generate a plurality of packets 602 describing
the traced instructions; and a retirement unit 606 to com-
press a multi-bit RET target indication to a single bit RET
target indication.

In one embodiment, the retirement unit 606 further
includes a retirement buffer 612 and implements the ITS
607. The ITS 607 may implement a RET compression 608
unit, a sync point module 611, and a call depth counter
(CDC) 609. In one embodiment, RET compression 608,
sync point module 6011, and CDC 609 are the same as their
similarly-named counterparts described with respect to FIG.
1.

In one embodiment, the integrated circuit is a Central
Processing Unit (CPU). In one embodiment, the central
processing unit is utilized for one of a tablet computing
device or a smartphone. In accordance with one embodi-
ment, such an integrated circuit 601 thus initiates instruction
tracing (e.g., via ITS 607) for instructions of a traced
application, mode, or code region, as the instructions are
executed by the integrated circuit 601; generates a plurality
of packets 620 describing the instruction tracing (e.g., via
packet generation logic 603 as controlled by the ITS 607);
and compresses a multi-bit indication of the target of a RET
instruction (RETurn instruction) to a single bit indication of
a well-behaved RET target (e.g., via the retirement unit 606
and specifically via functionality of the RET compression
unit 608, sync point module 611, and CDC 609 working in
conjunction with the retirement buffer 612).

In one embodiment, the integrated circuit 601 compresses
the multi-bit RET target indication to the single bit RET
target indication by initiating instruction tracing for instruc-
tions executed by the integrated circuit, determining whether
the RET instruction mispredicted, determining a value of a
CDC, and when the RET instruction did not mispredict and
when the value of the CDC is greater than zero, compressing
the multi-bit RET target indication to a single-bit RET target
indication.

FIG. 6B shows a diagrammatic representation of a system
699 in accordance with which embodiments may operate, be
installed, integrated, or configured. In one embodiment,
system 699 includes a memory 695 and a processor or
processors 696. For example, memory 695 may store
instructions to be executed and processor(s) 696 may
execute such instructions. System 699 includes communi-
cation bus(es) 665 to transfer transactions, instructions,
requests, and data within system 699 among a plurality of
peripheral device(s) 670 communicably interfaced with one
or more communication buses 665 and/or interface(s) 675.
Display unit 680 is additionally depicted within system 699.
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Distinct within system 699 is integrated circuit 601 which
may be installed and configured in a compatible system 699,
or manufactured and provided separately so as to operate in
conjunction with appropriate components of system 699.

In accordance with one embodiment, system 699 includes
at least a display unit 680 and an integrated circuit 601. The
integrated circuit 601 may operate as, for example, a pro-
cessor or as another computing component of system 699. In
such an embodiment, the integrated circuit 601 of system
699 includes at least: a data bus 604, packet generation logic
603 to generate a plurality of packets describing the traced
instructions; and a retirement unit 606 to compress a multi-
bit RET target address to a single bit RET target address
indication. As discussed above, in some embodiments, the
single-bit RET target address indication may be intermixed
with conditional branch outcomes in the trace log output by
the ITS 607.

In one embodiment, the retirement unit 606 further
includes a retirement buffer 612 and implements the ITS
607. The retirement unit 606 may further implement the
packet generation logic 603 in accordance with another
embodiment.

In accordance with one embodiment, such a system 699
embodies a tablet or a smartphone, in which the display unit
680 is a touchscreen interface of the tablet or the smart-
phone; and further in which the integrated circuit 601 is
incorporated into the tablet or smartphone.

Referring now to FIG. 7, shown is a block diagram
illustrating a system 700 in which an embodiment of the
disclosure may be used. As shown in FIG. 7, multiprocessor
system 700 is a point-to-point interconnect system, and
includes a first processor 770 and a second processor 780
coupled via a point-to-point interconnect 750. While shown
with only two processors 770, 780, it is to be understood that
the scope of embodiments of the disclosure is not so limited.
In other embodiments, one or more additional processors
may be present in a given processor. In one embodiment, the
multiprocessor system 700 may implement minimizing
bandwidth to track return targets as described herein.

Processors 770 and 780 are shown including integrated
memory controller units 772 and 782, respectively. Proces-
sor 770 also includes as part of its bus controller units
point-to-point (P-P) interfaces 776 and 778; similarly, sec-
ond processor 780 includes P-P interfaces 786 and 788.
Processors 770, 780 may exchange information via a point-
to-point (P-P) interface 750 using P-P interface circuits 778,
788. As shown in FIG. 7, IMCs 772 and 782 couple the
processors to respective memories, namely a memory 732
and a memory 734, which may be portions of main memory
locally attached to the respective processors.

Processors 770, 780 may each exchange information with
a chipset 790 via individual P-P interfaces 752, 754 using
point to point interface circuits 776, 794, 786, 798. Chipset
790 may also exchange information with a high-perfor-
mance graphics circuit 738 via a high-performance graphics
interface 739.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 790 may be coupled to a first bus 716 via an
interface 796. In one embodiment, first bus 716 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O
interconnect bus, although the scope of the present disclo-
sure is not so limited.
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As shown in FIG. 7, various [/O devices 714 may be
coupled to first bus 716, along with a bus bridge 718 which
couples first bus 716 to a second bus 720. In one embodi-
ment, second bus 720 may be a low pin count (LPC) bus.
Various devices may be coupled to second bus 720 includ-
ing, for example, a keyboard and/or mouse 722, communi-
cation devices 727 and a storage unit 728 such as a disk drive
or other mass storage device which may include instruc-
tions/code and data 730, in one embodiment. Further, an
audio I/O 724 may be coupled to second bus 720. Note that
other architectures are possible. For example, instead of the
point-to-point architecture of FIG. 7, a system may imple-
ment a multi-drop bus or other such architecture.

Referring now to FIG. 8, shown is a block diagram of a
system 800 in which one embodiment of the disclosure may
operate. The system 800 may include one or more proces-
sors 810, 815, which are coupled to graphics memory
controller hub (GMCH) 820. The optional nature of addi-
tional processors 815 is denoted in FIG. 8 with broken lines.
In one embodiment, processors 810, 815 implement mini-
mizing bandwidth to track return targets according to
embodiments of the disclosure.

Each processor 810, 815 may be some version of the
circuit, integrated circuit, processor, and/or silicon inte-
grated circuit as described above. However, it should be
noted that it is unlikely that integrated graphics logic and
integrated memory control units would exist in the proces-
sors 810, 815. FIG. 8 illustrates that the GMCH 820 may be
coupled to a memory 840 that may be, for example, a
dynamic random access memory (DRAM). The DRAM
may, for at least one embodiment, be associated with a
non-volatile cache.

The GMCH 820 may be a chipset, or a portion of a
chipset. The GMCH 820 may communicate with the pro-
cessor(s) 810, 815 and control interaction between the
processor(s) 810, 815 and memory 840. The GMCH 820
may also act as an accelerated bus interface between the
processor(s) 810, 815 and other elements of the system 800.
For at least one embodiment, the GMCH 820 communicates
with the processor(s) 810, 815 via a multi-drop bus, such as
a frontside bus (FSB) 895.

Furthermore, GMCH 820 is coupled to a display 845
(such as a flat panel or touchscreen display). GMCH 820
may include an integrated graphics accelerator. GMCH 820
is further coupled to an input/output (I/O) controller hub
(ICH) 850, which may be used to couple various peripheral
devices to system 800. Shown for example in the embodi-
ment of FIG. 8 is an external graphics device 860, which
may be a discrete graphics device, coupled to ICH 850,
along with another peripheral device 870.

Alternatively, additional or different processors may also
be present in the system 800. For example, additional
processor(s) 815 may include additional processors(s) that
are the same as processor 810, additional processor(s) that
are heterogeneous or asymmetric to processor 810, accel-
erators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or
any other processor. There can be a variety of differences
between the processor(s) 810, 815 in terms of a spectrum of
metrics of merit including architectural, micro-architectural,
thermal, power consumption characteristics, and the like.
These differences may effectively manifest themselves as
asymmetry and heterogeneity amongst the processors 810,
815. For at least one embodiment, the various processors
810, 815 may reside in the same die package.

Referring now to FIG. 9, shown is a block diagram of a
system 900 in which an embodiment of the disclosure may
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operate. FIG. 9 illustrates processors 970, 980. In one
embodiment, processors 970, 980 may implement minimiz-
ing bandwidth to track return targets as described above.
Processors 970, 980 may include integrated memory and I/O
control logic (“CL”) 972 and 982, respectively and inter-
communicate with each other via point-to-point interconnect
950 between point-to-point (P-P) interfaces 978 and 988
respectively. Processors 970, 980 each communicate with
chipset 990 via point-to-point interconnects 952 and 954
through the respective P-P interfaces 976 to 994 and 986 to
998 as shown. For at least one embodiment, the CL. 972, 982
may include integrated memory controller units. CLs 972,
982 may include /O control logic. As depicted, memories
932, 934 coupled to CLs 972, 982 and 1/O devices 914 are
also coupled to the control logic 972, 982. Legacy 1/O
devices 915 are coupled to the chipset 990 via interface 996.

FIG. 10 illustrates a diagrammatic representation of a
machine in the example form of a computer system 1000
within which a set of instructions, for causing the machine
to perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of a server or a
client device in a client-server network environment, or as a
peer machine in a peer-to-peer (or distributed) network
environment. The machine may be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a cellular telephone, a web appliance, a
server, a network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or
otherwise) that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein.

The computer system 1000 includes a processing device
1002, a main memory 1004 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) (such as synchronous DRAM (SDRAM) or
DRAM (RDRAM), etc.), a static memory 1006 (e.g., flash
memory, static random access memory (SRAM), etc.), and
a data storage device 1018, which communicate with each
other via a bus 1030.

Processing device 1002 represents one or more general-
purpose processing devices such as a microprocessor, cen-
tral processing unit, or the like. More particularly, the
processing device may be complex instruction set comput-
ing (CISC) microprocessor, reduced instruction set com-
puter (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
instruction sets, or processors implementing a combination
of instruction sets. Processing device 1002 may also be one
or more special-purpose processing devices such as an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. In one embodiment,
processing device 1002 may include one or processing
cores. The processing device 1002 is configured to execute
the processing logic 1026 for performing the operations and
steps discussed herein. In one embodiment, processing
device 1002 is the same as processor architecture 100
described with respect to FIG. 1 that implements minimizing
bandwidth to track return targets as described herein with
embodiments of the disclosure.
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The computer system 1000 may further include a network
interface device 1008 communicably coupled to a network
1020. The computer system 1000 also may include a video
display unit 1010 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)), an alphanumeric input device 1012
(e.g., a keyboard), a cursor control device 1014 (e.g., a
mouse), and a signal generation device 1016 (e.g., a
speaker). Furthermore, computer system 1000 may include
a graphics processing unit 1022, a video processing unit
1028, and an audio processing unit 1032.

The data storage device 1018 may include a machine-
accessible storage medium 1024 on which is stored software
1026 implementing any one or more of the methodologies of
functions described herein, such as implementing an RS
with restricted entries as described above. The software
1026 may also reside, completely or at least partially, within
the main memory 1004 as instructions 1026 and/or within
the processing device 1002 as processing logic 1026 during
execution thereof by the computer system 1000; the main
memory 1004 and the processing device 1002 also consti-
tuting machine-accessible storage media.

The machine-readable storage medium 1024 may also be
used to store instructions 1026 implementing ITS logic for
minimizing bandwidth to track return targets such as
described with respect to ITS 155 in FIG. 1, and/or a
software library containing methods that call the above
applications. While the machine-accessible storage medium
1028 is shown in an example embodiment to be a single
medium, the term “machine-accessible storage medium”
should be taken to include a single medium or multiple
media (e.g., a centralized or distributed database, and/or
associated caches and servers) that store the one or more sets
of instructions. The term “machine-accessible storage
medium” shall also be taken to include any medium that is
capable of storing, encoding or carrying a set of instruction
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure. The term “machine-accessible storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, and optical and magnetic media.

The following examples pertain to further embodiments.
Example 1 is a processing device for implementing mini-
mizing bandwidth to track return targets by an instruction
tracing system (ITS) comprising an instruction fetch unit
comprising a return stack buffer (RSB) to predict a target
address of a return (RET) instruction corresponding to a call
(CALL) instruction and a retirement unit comprising an
instruction tracing module. Further to Example 1, the
instruction tracking module is to initiate instruction tracing
for instructions executed by the processing device, deter-
mine whether the target address of the RET instruction was
mispredicted, determine a value of a call depth counter
(CDC) maintained by the instruction tracing module, and
when the target address of the RET instruction was not
mispredicted and when the value of the CDC is greater than
zero, generate an indication that the RET instruction
branches to a next linear instruction after the corresponding
CALL instruction.

In Example 2, the subject matter of Example 1 can
optionally include further comprising the instruction tracing
module to provide the indication as part of a plurality of
packets describing the instruction tracing, and wherein the
indication is smaller than a size of the target address of the
RET instruction. In Example 3, the subject matter of any one
of Examples 1-2 can optionally include wherein the instruc-
tion tracing module to increment the CDC when a CALL
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instruction retires from the retirement unit and to decrement
the CDC when a RET instruction retires from the retirement
unit.

In Example 4, the subject matter of any one of Examples
1-3 can optionally include wherein the CDC is configured to
saturate at a value equal to a depth of the RSB and at a value
of zero. In Example 5, the subject matter of any one of
Examples 1-4 can optionally include wherein the instruction
tracing module to determine whether the RET instruction
mispredicted further comprises the instruction tracing mod-
ule to receive an indication from an execution unit of the
processing device of the misprediction.

In Example 6, the subject matter of any one of Examples
1-5 can optionally include wherein when the RET instruc-
tion mispredicts or when the value of the CDC is equal to
zero, the instruction tracing module to provide a full target
address for the RET instruction as part of the instruction
tracing. In Example 7, the subject matter of any one of
Examples 1-6 can optionally include wherein the instruction
tracing module further to reset the value of the CDC to zero
when an indication of a misprediction of a RET instruction
is received. In Example 8, the subject matter of any one of
Examples 1-7 can optionally include wherein the instruction
tracing module further to reset the value of the CDC to zero
when an indication of any misprediction by the processing
device is received.

In Example 9, the subject matter of any one of Examples
1-8 can optionally include wherein the instruction tracing
module further to reset the value of the CDC to zero when
an indication of disabling of the instruction tracing is
received. In Example 10, the subject matter of any one of
Examples 1-9 can optionally include wherein the instruction
tracing module further to reset the value of the CDC to zero
when an indication of a synchronization packet of the
instruction tracing is received.

In Example 11, the subject matter of any one of Examples
1-10 can optionally include wherein the synchronization
packet is a boundary packet (BP). In Example 12, the subject
matter of any one of Examples 1-11 can optionally include
wherein the RET instruction comprises an indirect jump
whose target address is removed from a top of a software
stack of the processing device. All optional features of the
apparatus described above may also be implemented with
respect to the method or process described herein.

Example 13 is a method for implementing minimizing
bandwidth to track return targets comprising initiating
instruction tracing for instructions executed by a processing
device, determining whether a target address of a return
(RET) instruction was mispredicted, wherein the RET
instruction corresponds to a call (CALL) instruction, deter-
mining a value of a call depth counter (CDC), and when the
target address of the RET instruction was not mispredicted
and when the value of the CDC is greater than zero,
generating an indication that the RET instruction branches to
a next linear instruction after the corresponding CALL
instruction.

In Example 14, the subject matter of Examples 13 can
optionally include further comprising providing the indica-
tion as part of a plurality of packets describing the instruc-
tion tracing, wherein the indication is smaller than a size of
the target address of the RET instruction. In Example 15, the
subject matter of any one of Examples 13-14 can optionally
include further comprising incrementing the CDC when a
CALL instruction retires from a retirement unit of the
processing device, and decrementing the CDC when a RET
instruction retires from the retirement unit.
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In Example 16, the subject matter of any one of Examples
13-15 can optionally include wherein the CDC is configured
to saturate at a value equal to a depth of the RSB and at a
value of zero. In Example 17, the subject matter of any one
of Examples 13-16 can optionally include wherein the
determining whether the RET instruction mispredicted fur-
ther comprises receiving an indication from an execution
unit of the processing device of the misprediction. In
Example 18, the subject matter of any one of Examples
13-17 can optionally include wherein when the RET instruc-
tion mispredicts or when the value of the CDC is equal to
zero, providing a full target address for the RET instruction
as part of the instruction tracing.

In Example 19, the subject matter of any one of Examples
13-18 can optionally include further comprising resetting the
value of the CDC to zero when an indication of a mispre-
diction of a RET instruction is received, resetting the value
of the CDC to zero when an indication of disabling of the
instruction tracing is received, and resetting the value of the
CDC to zero when an indication of a synchronization packet
of the instruction tracing is received. In Example 20, the
subject matter of any one of Examples 13-19 can optionally
include wherein the synchronization packet is a boundary
packet (BP). In Example 21, the subject matter of any one
of Examples 13-20 can optionally include further compris-
ing resetting the value of the CDC to zero when an indica-
tion of any misprediction by the processing device is
received. In Example 22, the subject matter of any one of
Examples 13-21 can optionally include wherein the RET
instruction comprises an indirect jump whose target address
is removed from a top of a software stack of the processing
device.

Example 23 is a system for implementing minimizing
bandwidth to track return targets. In Example 23 the system
includes a memory and a processing device communicably
coupled to the memory, the processing device comprising a
memory and a processing device communicably coupled to
the memory, the processing device comprising an instruction
tracing module. Further to Example 23, the instruction
tracing module to initiate instruction tracing for instructions
executed by the processing device, determine whether a
target address of a return (RET) instruction was mispre-
dicted, wherein the RET instruction corresponds to a call
(CALL) instruction, determine a value of a call depth
counter (CDC), and when the target address of the RET
instruction was not mispredicted and when the value of the
CDC is greater than zero, generate an indication that the
RET instruction branches to a next linear instruction after
the corresponding CALL instruction.

In Example 24, the subject matter of Example 23 can
optionally include wherein the instruction tracing module
further to provide the indication as part of a plurality of
packets describing the instruction tracing, and wherein the
indication is smaller than a size of the target address of the
RET instruction. In Example 25, the subject matter of any
one of Examples 23-24 can optionally include wherein the
instruction tracing module to increment the CDC when a
CALL instruction retires from a retirement unit of the
processing device and to decrement the CDC when a RET
instruction retires from the retirement unit, and wherein the
CDC is configured to saturate at a value equal to a depth of
the RSB and at a value of zero. In Example 26, the subject
matter of any one of Examples 23-25 can optionally include
wherein the instruction tracing module to determine whether
the RET instruction mispredicted further comprises the
instruction tracing module to receive an indication from an
execution unit of the processing device of the misprediction.
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In Example 27, the subject matter of any one of Examples
23-26 can optionally include wherein when the RET instruc-
tion mispredicts or when the value of the CDC is equal to
zero, the instruction tracing module to provide a full target
address for the RET instruction as part of the instruction
tracing. In Example 28, the subject matter of any one of
Examples 23-27 can optionally include wherein the instruc-
tion tracing module further to reset the value of the CDC to
zero when an indication of a misprediction of a RET
instruction is received, reset the value of the CDC to zero
when an indication of disabling of the instruction tracing is
received, and reset the value of the CDC to zero when an
indication of a synchronization packet of the instruction
tracing is received.

In Example 29, the subject matter of any one of Examples
23-28 can optionally include wherein the synchronization
packet is a boundary packet (BP). In Example 30, the subject
matter of any one of Examples 23-29 can optionally include
wherein the instruction tracing module further to reset the
value of the CDC to zero when an indication of any
misprediction by the processing device is received. In
Example 31, the subject matter of any one of Examples
23-30 can optionally include wherein the RET instruction
comprises an indirect jump whose target address is removed
from a top of a software stack of the processing device. All
optional features of the system described above may also be
implemented with respect to the method or process
described herein.

Example 32 is non-transitory computer-readable medium
for implementing minimizing bandwidth to track return
targets. In Example 32, the non-transitory machine-readable
medium includes data that, when accessed by a processing
device, cause the processing device to perform operations
comprising initiating instruction tracing for instructions
executed by a processing device, determining whether a
target address of a return (RET) instruction was predicted,
wherein the RET instruction corresponds to a call (CALL)
instruction, determining a value of a call depth counter
(CDC), and when the target address of the RET instruction
was not mispredicted and when the value of the CDC is
greater than zero, generating an indication that the RET
instruction branches to a next linear instruction after the
corresponding CALL instruction.

In Example 33, the subject matter of Example 32 can
optionally include wherein the operations further comprise
providing the indication as part of a plurality of packets
describing the instruction tracing, and wherein the indication
is smaller than a size of the target address of the RET
instruction. In Example 34, the subject matter of any one of
Examples 32-33 can optionally include wherein the opera-
tions further comprise incrementing the CDC when a CALL
instruction retires from a retirement unit of the processing
device, and decrementing the CDC when a RET instruction
retires from the retirement unit, wherein the CDC is con-
figured to saturate at a value equal to a depth of a return stack
buffer (RSB) of the processing device and at a value of zero.

In Example 35, the subject matter of any one of Examples
32-34 can optionally include wherein the determining
whether the RET instruction mispredicted further comprises
receiving an indication from an execution unit of the pro-
cessing device of the misprediction. In Example 36, the
subject matter of any one of Examples 32-35 can optionally
include wherein the operations further comprise when the
RET instruction mispredicts or when the value of the CDC
is equal to zero, providing a full target address for the RET
instruction as part of the instruction tracing. In Example 37,
the subject matter of any one of Examples 32-36 can
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optionally include wherein the operations further comprise
resetting the value of the CDC to zero when an indication of
a misprediction of a RET instruction is received, resetting
the value of the CDC to zero when an indication of disabling
of the instruction tracing is received, and resetting the value
of the CDC to zero when an indication of a synchronization
packet of the instruction tracing is received.

In Example 38, the subject matter of any one of Examples
32-37 can optionally include wherein the operations further
comprise resetting the value of the CDC to zero when an
indication of any misprediction by the processing device is
received. In Example 39, the subject matter of any one of
Examples 32-38 can optionally include wherein the syn-
chronization packet is a boundary packet (BP). In Example
40, the subject matter of any one of Examples 32-39 can
optionally include wherein the RET instruction comprises an
indirect jump whose target address is removed from a top of
a software stack of the processing device.

Example 41 is an apparatus for implementing minimizing
bandwidth to track return targets comprising means for
initiating instruction tracing for instructions executed by a
processing device, means for determining whether a target
address of a return (RET) instruction was mispredicted,
wherein the RET instruction corresponds to a call (CALL)
instruction, means for determining a value of a call depth
counter (CDC), and means for generating an indication that
the RET instruction branches to a next linear instruction
after the corresponding CALL instruction when the target
address of the RET instruction was not mispredicted and
when the value of the CDC is greater than zero. In Example
42, the subject matter of Example 41 can optionally include
the apparatus further configured to perform the method of
any one of the Examples 13 to 20.

Example 43 is at least one machine readable medium
comprising a plurality of instructions that in response to
being executed on a computing device, cause the computing
device to carry out a method according to any one of
Examples 13-22. Example 45 is an apparatus for implement-
ing minimizing bandwidth to track return targets by an ITS,
configured to perform the method of any one of Examples
13-22. Specifics in the Examples may be used anywhere in
one or more embodiments.

While the disclosure has been described with respect to a
limited number of embodiments, those skilled in the art will
appreciate numerous modifications and variations there
from. It is intended that the appended claims cover all such
modifications and variations as fall within the true spirit and
scope of this disclosure.

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as is
useful in simulations, the hardware may be represented
using a hardware description language or another functional
description language. Additionally, a circuit level model
with logic and/or transistor gates may be produced at some
stages of the design process. Furthermore, most designs, at
some stage, reach a level of data representing the physical
placement of various devices in the hardware model. In the
case where conventional semiconductor fabrication tech-
niques are used, the data representing the hardware model
may be the data specifying the presence or absence of
various features on different mask layers for masks used to
produce the integrated circuit. In any representation of the
design, the data may be stored in any form of a machine
readable medium. A memory or a magnetic or optical
storage such as a disc may be the machine readable medium
to store information transmitted via optical or electrical
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wave modulated or otherwise generated to transmit such
information. When an electrical carrier wave indicating or
carrying the code or design is transmitted, to the extent that
copying, buffering, or re-transmission of the electrical signal
is performed, a new copy is made. Thus, a communication
provider or a network provider may store on a tangible,
machine-readable medium, at least temporarily, an article,
such as information encoded into a carrier wave, embodying
techniques of embodiments of the present disclosure.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a
module includes hardware, such as a micro-controller, asso-
ciated with a non-transitory medium to store code adapted to
be executed by the micro-controller. Therefore, reference to
a module, in one embodiment, refers to the hardware, which
is specifically configured to recognize and/or execute the
code to be held on a non-transitory medium. Furthermore, in
another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the
non-transitory medium. Often module boundaries that are
illustrated as separate commonly vary and potentially over-
lap. For example, a first and a second module may share
hardware, software, firmware, or a combination thereof,
while potentially retaining some independent hardware,
software, or firmware. In one embodiment, use of the term
logic includes hardware, such as transistors, registers, or
other hardware, such as programmable logic devices.

Use of the phrase ‘configured to,” in one embodiment,
refers to arranging, putting together, manufacturing, offering
to sell, importing and/or designing an apparatus, hardware,
logic, or element to perform a designated or determined task.
In this example, an apparatus or element thereof that is not
operating is still ‘configured to’ perform a designated task if
it is designed, coupled, and/or interconnected to perform
said designated task. As a purely illustrative example, a logic
gate may provide a O or a 1 during operation. But a logic gate
‘configured to’ provide an enable signal to a clock does not
include every potential logic gate that may provide a 1 or 0.
Instead, the logic gate is one coupled in some manner that
during operation the 1 or O output is to enable the clock.
Note once again that use of the term ‘configured to’ does not
require operation, but instead focus on the latent state of an
apparatus, hardware, and/or element, where in the latent
state the apparatus, hardware, and/or element is designed to
perform a particular task when the apparatus, hardware,
and/or element is operating.

Furthermore, use of the phrases ‘to,” ‘capable of/to,” and
or ‘operable to,” in one embodiment, refers to some appa-
ratus, logic, hardware, and/or element designed in such a
way to enable use of the apparatus, logic, hardware, and/or
element in a specified manner. Note as above that use of to,
capable to, or operable to, in one embodiment, refers to the
latent state of an apparatus, logic, hardware, and/or element,
where the apparatus, logic, hardware, and/or element is not
operating but is designed in such a manner to enable use of
an apparatus in a specified manner.

A value, as used herein, includes any known representa-
tion of a number, a state, a logical state, or a binary logical
state. Often, the use of logic levels, logic values, or logical
values is also referred to as 1’s and 0’s, which simply
represents binary logic states. For example, a 1 refers to a
high logic level and O refers to a low logic level. In one
embodiment, a storage cell, such as a transistor or flash cell,
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may be capable of holding a single logical value or multiple
logical values. However, other representations of values in
computer systems have been used. For example the decimal
number ten may also be represented as a binary value of
1010 and a hexadecimal letter A. Therefore, a value includes
any representation of information capable of being held in a
computer system.

Moreover, states may be represented by values or portions
of' values. As an example, a first value, such as a logical one,
may represent a default or initial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, in one embodiment, refer
to a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, i.e. reset, while an updated value potentially includes
a low logical value, i.e. set. Note that any combination of
values may be utilized to represent any number of states.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via
instructions or code stored on a machine-accessible,
machine readable, computer accessible, or computer read-
able medium which are executable by a processing element.
A non-transitory machine-accessible/readable medium
includes any mechanism that provides (i.e., stores and/or
transmits) information in a form readable by a machine, such
as a computer or electronic system. For example, a non-
transitory machine-accessible medium includes random-ac-
cess memory (RAM), such as static RAM (SRAM) or
dynamic RAM (DRAM); ROM; magnetic or optical storage
medium; flash memory devices; electrical storage devices;
optical storage devices; acoustical storage devices; other
form of storage devices for holding information received
from transitory (propagated) signals (e.g., carrier waves,
infrared signals, digital signals); etc., which are to be dis-
tinguished from the non-transitory mediums that may
receive information there from.

Instructions used to program logic to perform embodi-
ments of the disclosure may be stored within a memory in
the system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via
anetwork or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information in a form readable by
a machine (e.g., a computer), but is not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmit-
ting electronic instructions or information in a form readable
by a machine (e.g., a computer)

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present disclosure. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
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tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the disclosure as set
forth in the appended claims. The specification and drawings
are, accordingly, to be regarded in an illustrative sense rather
than a restrictive sense. Furthermore, the foregoing use of
embodiment and other exemplarily language does not nec-
essarily refer to the same embodiment or the same example,
but may refer to different and distinct embodiments, as well
as potentially the same embodiment.

What is claimed is:

1. A processing device, comprising:

an instruction fetch unit comprising a return stack buffer

(RSB) to predict a target address of a return (RET)
instruction corresponding to a call (CALL) instruction;

a retirement unit comprising an instruction tracing module

to:

initiate instruction tracing for instructions executed by
the processing device;

determine whether the target address of the RET
instruction was mispredicted;

determine a value of a call depth counter (CDC)
maintained by the instruction tracing module; and

when the target address of the RET instruction was not
mispredicted and when the value of the CDC is
greater than zero, generate an indication that the
RET instruction branches to a next linear instruction
after the corresponding CALL instruction.

2. The processing device of claim 1, further comprising
the instruction tracing module to provide the indication as
part of a plurality of packets describing the instruction
tracing, and wherein the indication is smaller than a size of
the target address of the RET instruction.

3. The processing device of claim 1, wherein the instruc-
tion tracing module to increment the CDC when a CALL
instruction retires from the retirement unit and to decrement
the CDC when a RET instruction retires from the retirement
unit.

4. The processing device of claim 3, wherein the CDC is
to saturate at a value equal to a depth of the RSB and at a
value of zero.

5. The processing device of claim 1, wherein the instruc-
tion tracing module to determine whether the RET instruc-
tion mispredicted further comprises the instruction tracing
module to receive an indication from an execution unit of the
processing device of the misprediction.

6. The processing device of claim 1, wherein when the
RET instruction mispredicts or when the value of the CDC
is equal to zero, the instruction tracing module to provide a
full target address for the RET instruction as part of the
instruction tracing.

7. The processing device of claim 1, wherein the instruc-
tion tracing module further to reset the value of the CDC to
zero when an indication of a misprediction of a RET
instruction is received.

8. The processing device of claim 1, wherein the instruc-
tion tracing module further to reset the value of the CDC to
zero when an indication of any misprediction by the pro-
cessing device is received.

9. The processing device of claim 1, wherein the instruc-
tion tracing module further to reset the value of the CDC to
zero when an indication of disabling of the instruction
tracing is received.
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10. The processing device of claim 1, wherein the instruc-
tion tracing module further to reset the value of the CDC to
zero when an indication of a synchronization packet of the
instruction tracing is received.
11. A method, comprising:
initiating instruction tracing for instructions executed by
a processing device;

determining whether a target address of a return (RET)
instruction was mispredicted, wherein the RET instruc-
tion corresponds to a call (CALL) instruction;

determining a value of a call depth counter (CDC); and

when the target address of the RET instruction was not
mispredicted and when the value of the CDC is greater
than zero, generating an indication that the RET
instruction branches to a next linear instruction after the
corresponding CALL instruction.

12. The method of claim 11, further comprising providing
the indication as part of a plurality of packets describing the
instruction tracing, wherein the indication is smaller than a
size of the target address of the RET instruction.

13. The method of claim 11, further comprising:

incrementing the CDC when a CALL instruction retires

from a retirement unit of the processing device; and
decrementing the CDC when a RET instruction retires
from the retirement unit.

14. The method of claim 11, wherein when the RET
instruction mispredicts or when the value of the CDC is
equal to zero, providing a full target address for the RET
instruction as part of the instruction tracing.

15. The method of claim 11, further comprising:

resetting the value of the CDC to zero when an indication

of a misprediction of a RET instruction is received;
resetting the value of the CDC to zero when an indication
of disabling of the instruction tracing is received; and
resetting the value of the CDC to zero when an indication
of a synchronization packet of the instruction tracing is
received.

16. The method of claim 11, further comprising resetting
the value of the CDC to zero when an indication of any
misprediction by the processing device is received.

10

15

20

25

30

35

28

17. An system comprising:
a memory to store a trace log generated by an instruction
tracking module;
a processing device communicably coupled to the
memory, the processing device comprising the instruc-
tion tracing module to:
initiate instruction tracing for instructions executed by
the processing device;

determine whether a target address of a return (RET)
instruction was mispredicted, wherein the RET
instruction corresponds to a call (CALL) instruction;

determine a value of a call depth counter (CDC); and

when the target address of the RET instruction was not
mispredicted and when the value of the CDC is
greater than zero, generate an indication that the
RET instruction branches to a next linear instruction
after the corresponding CALL instruction.

18. The system of claim 17, wherein the instruction
tracing module further to provide the indication as part of a
plurality of packets describing the instruction tracing, and
wherein the indication is smaller than a size of the target
address of the RET instruction.

19. The system of claim 17, wherein the instruction
tracing module to increment the CDC when a CALL instruc-
tion retires from a retirement unit of the processing device
and to decrement the CDC when a RET instruction retires
from the retirement unit, and wherein the CDC is to saturate
at a value equal to a depth of the RSB and at a value of zero.

20. The system of claim 17, wherein the instruction
tracing module further to:

reset the value of the CDC to zero when an indication of
a misprediction of a RET instruction is received;

reset the value of the CDC to zero when an indication of
disabling of the instruction tracing is received; and

reset the value of the CDC to zero when an indication of
a synchronization packet of the instruction tracing is
received.



